14mm Titanium Nail Adjustable
14mm Titanium Nail Adjustable Grade 2 – The titanium nail has a high tolerance to heat which will ensure proper combustion.
History of Titanium
Titanium was discovered in 1791 by the clergyman and amateur geologist, William Gregor, as an inclusion of a mineral in Cornwall, Great Britain. Gregor recognized the presence of a new element in ilmenite when he found black sand by a stream and noticed the sand was attracted by a magnet. Analyzing the sand, he determined the presence of two metal oxides: iron oxide (explaining the attraction to the magnet) and 45.25% of a white metallic oxide he could not identify. Realizing that the unidentified oxide contained a metal that did not match any known element, Gregor reported his findings to the Royal Geological Society of Cornwall and in the German science journal Crell’s Annalen.
Around the same time, Franz-Joseph Müller von Reichenstein produced a similar substance, but could not identify it. The oxide was independently rediscovered in 1795 by Prussian chemist Martin Heinrich Klaproth in rutile from Boinik (German name of Bajmócska) village of Hungary (now Bojničky in Slovakia). Klaproth found that it contained a new element and named it for the Titans of Greek mythology. After hearing about Gregor’s earlier discovery, he obtained a sample of menaccanite and confirmed that it contained titanium.
The currently known processes for extracting titanium from its various ores are laborious and costly; it is not possible to reduce the ore by heating with carbon (as in iron smelting) because titanium combines with the carbon to produce titanium carbide. Pure metallic titanium (99.9%) was first prepared in 1910 by Matthew A. Hunter at Rensselaer Polytechnic Institute by heating TiCl4 with sodium at 700–800 °C under great pressure in a batch process known as the Hunter process. Titanium metal was not used outside the laboratory until 1932 when William Justin Kroll proved that it can be produced by reducing titanium tetrachloride (TiCl4) with calcium. Eight years later he refined this process with magnesium and even sodium in what became known as the Kroll process.] Although research continues into more efficient and cheaper processes (e.g., FFC Cambridge, Armstrong), the Kroll process is still used for commercial production.